

International Journal of Innovative Research & Growth

E-ISSN: 2455-1848

homepage: http://www.ijirg.com/ijirg/ Volume: 14 Issue: 3, July 2025

Some Results Concerned to Generalized Functions of Fractional Calculus

Rashmi Sharma^{1*}, Amit², Vishal Saxena³, Kishan Sharma⁴

¹Research Scholar, Jyoti Vidyapeeth Women's University, Jaipur-303122, Rajasthan, India ^{2,3}Jyoti Vidyapeeth Women's University, Jaipur-303122, Rajasthan, India ⁴Dr. Bhagwat Sahay Govt. College, Gwalior-474003, M.P., India

CORRESPONDING AUTHOR

Rashmi Sharma

e-mail: rashmisharma3115@gmail.com

KEYWORDS

Fractional Differential Operator, Fractional Integral Operator, Generalized M-Series

ARTICLE DETAILS

Received 01 June 2025; revised 03 July 2025; accepted 27 July 2025

DOI: 10.26671/IJIRG.2025.3.14.105

CITATION

Sharma, R., Amit, Saxena, V., Sharma, K. (2025). Some Results Concerned to Generalized Functions of Fractional Calculus. *Int J Innovat Res Growth*, 14(3), 143143-143146. DOI

This work may be used under the terms of the Creative Commons License.

Abstract

In the present paper, the author introduced the functions K(c, v, p, q, x) and $K(c, -\mu, p, q, x)$ in terms of generalized M-series and its properties by using fractional calculus

1. Introduction

The function which is introduced and studied by Mittag-Leffler [3,4] in terms of the power series given below

$$E_{\alpha}(x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(\alpha n + 1)}, \quad (\alpha > 0)$$
(1.1)

A generalization of this series in the following form

$$E_{\alpha,\beta}(x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(\alpha n + \beta)}, \quad (\alpha, \beta > 0) \text{ is given by Wiman [2].}$$
 (1.2)

The generalized M-Series [8] is given by

$${}_{pM_{q}}^{\alpha,\beta}(a_{1},...,a_{p};b_{1},...,b_{q};x) = {}_{pM_{q}}^{\alpha,\beta}(x) = \sum_{n=0}^{\infty} \frac{(a_{1})_{n}...(a_{p})_{n}}{(b_{1})_{n}...(b_{q})_{n}} \frac{x^{n}}{\Gamma(\alpha n + \beta)}$$
(1.3)

where $\alpha, \beta \in C$, $R(\alpha) > 0$ and $(a_i)_n (i = 1, 2, ..., p)$ and $(b_j)_n (j = 1, 2, ..., q)$ are the Pochhammer symbols. Further details of this series are given by [8].

The Riemann-Liouville operator of fractional integral of order υ is given by

$$I_{x}^{\nu}\{f(x)\} = \frac{1}{\Gamma(\nu)} \int_{0}^{x} (x-t)^{\nu-1} f(t) dt$$
 (1.4)

provided that the integral exists.

The Riemann-Liouville operator of fractional derivative of order υ is defined [1,5,6,7] in the following form

$$D_x^{\upsilon}\{f(x)\} = \frac{1}{\Gamma(\upsilon)} \frac{d^n}{dx^n} \int_0^x \frac{f(t)}{(x-t)^{\upsilon+n-1}} dt, (n-1<\upsilon< n)$$
 (1.5)

provided that the integral exists.

2. Fractional Calculus Operators and Generalized M-Series

Let

$$f(x) = \sum_{n=0}^{\infty} \frac{(a_1)_n ... (a_p)_n}{(b_1)_n ... (b_q)_n} \frac{(cx)^n}{n!}$$
(2.1)

where c is an arbitrary constant.

The fractional integral operator of order ν is given by

$$I_{x}^{\nu}\{f(x)\} = \frac{1}{\Gamma(\nu)} \int_{0}^{x} (x-\tau)^{\nu-1} \sum_{n=0}^{\infty} \frac{(a_{1})_{n}...(a_{p})_{n}}{(b_{1})_{n}...(b_{q})_{n}} \frac{(c\tau)^{n}}{n!} d\tau$$

$$= \frac{1}{\Gamma(\upsilon)} \sum_{n=0}^{\infty} \frac{(a_1)_n ... (a_p)_n}{(b_1)_n ... (b_q)_n} \frac{c^n}{n!} \int_0^x (x - \tau)^{\upsilon - 1} \tau^n d\tau$$

$$= x^{\upsilon} \sum_{n=0}^{\infty} \frac{(a_1)_n ... (a_p)_n}{(b_1)_n ... (b_q)_n} \frac{(cx)^n}{\Gamma(\upsilon + n + 1)}$$

By using (1.3), the above equation can be written as

$$= x^{\nu}_{p} M_{q}(ct)$$
 (2.2)

The author introduced a new function which is given below

$$K(c, \nu, p, q, x) = x^{\nu}{}_{p}M_{q}(cx)$$
(2.3)

Now, the fractional differential operator of order μ is given by

$$D_x^{\mu}\{f(x)\} = D^k\{I_x^{k-\mu}\sum_{n=0}^{\infty} \frac{(a_1)_n...(a_p)_n}{(b_1)_n...(b_q)_n} \frac{(c_x)^n}{n!}\}$$

On simplifying, we arrive at

$$= D^{k} \left\{ x^{k-\mu} \sum_{n=0}^{\infty} \frac{(a_{1})_{n}...(a_{p})_{n}}{(b_{1})_{n}...(b_{q})_{n}} \frac{(cx)^{n}}{\Gamma(k-\mu+n+1)} \right.$$

$$= x^{-\mu} \sum_{n=0}^{\infty} \frac{(a_{1})_{n}...(a_{p})_{n}}{(b_{1})_{n}...(b_{q})_{n}} \frac{(cx)^{n}}{\Gamma(n+1-\mu)}$$

Again, by using (1.3), the above equation can be written as

$$=x^{-\mu}{}_{p}M_{q}(ct) \tag{2.4}$$

3. Properties of the Function K(c, v, p, q, x):

Theorem 3.1 If c is an arbitrary constant then

$$I_x^{\lambda} K(c, \nu, p, q, x) = K(c, \lambda + \nu, p, q, x)$$
(3.1)

Proof:

From the definition of the fractional integral, we have

$$I_x^{\lambda} K\left(c, \upsilon, p, q, x\right) = \frac{1}{\Gamma(\lambda)} \int_0^x (x - \tau)^{\lambda - 1} K(c, \upsilon, p, q, \tau) d\tau \tag{3.2}$$

Using (2.3), it reduces to

$$= \frac{1}{\Gamma(\lambda)} \int_0^x (x-\tau)^{\lambda-1} \tau^{\nu} \sum_{n=0}^{\infty} \frac{(a_1)_n ... (a_p)_n}{(b_1)_n ... (b_q)_n} \frac{(c\tau)^n}{\Gamma(\nu+n+1)} d\tau$$

On substituting $\tau = zx$, it yields

$$= \frac{1}{\Gamma(\lambda)} x^{\lambda+\nu} \sum_{n=0}^{\infty} \frac{(a_1)_n ... (a_p)_n}{(b_1)_n ... (b_q)_n} \frac{(cx)^n}{\Gamma(\nu+n+1)} \int_0^1 (1-z)^{\lambda-1} z^{k+\nu} dz$$
(3.3)

On simplifying and using (2.3), we arrive at

$$I_x^{\lambda} K(c, \nu, p, q, x) = K(c, \lambda + \nu, p, q, x)$$
(3.4)

Hence proved.

Theorem 3.2 If c is an arbitrary constant then

$$D_x^{\lambda} K(c, \nu, p, q, x) = K(c, \nu - \lambda, p, q, x)$$

Proof: By the definition of the fractional differential, we get

$$D_x^{\lambda} K(c, \nu, p, q, x) = D^k \{ I_x^{k-\lambda} K(c, \nu, p, q, x) \}$$
$$= D^k \{ x^{k+\nu-\lambda^{1,k+\nu-\lambda+1}}(cx) \}$$

Applying (2.3), we arrive at

$$D_x^{\lambda} K(c, \nu, p, q, x) = K(c, \nu - \lambda, p, q, x)$$

This proves theorem (3.2).

Conflict of Interest

The authors declare that there is no conflict of interest related to this research work.

Source of Funding

This research did not receive any external funding.

References

- [1] Kilbas, A. A., Srivastava, H.M., Trujillo, J.J. (2006). *Theory and Applications of Fractional Differential Equations*, North-Holand Mathematics Studies, 204, Elsevier. New York- London.
- [2] Wiman, A. (1905). Uber die Nullsteliun der Fuctionen $E_{\alpha}(x)$. Acta Math., 29, 217-234.
- [3] Mittag-Leffler, G. M. (1903). Sur la nuovelle function $E_{\alpha}(x)$. C.R. Acad. Sci. Paris, (2) 137, 554-558.
- [4] Mittag-Leffler, G. M. (1905). Sur la representation analytique de'une branche uniforme une function monogene. *Acta. Math.*, 29, 101-181.
- [5] Podlubny, I. (1999). Fractional Differential Equations,to Methods of their Solution and Some of their Applications. *Mathematicsin Science and Engineering*, 198, Acadmic Press, Califonia.
- [6] Oldham, K. B., Spanier, J. (1974). The Fractional Calculus; Theory and Applications of Differentiation and integration to Arbitrary Order, Academic Press, New York and London, ISBN 0-12-525550-0.
- [7] Miller, K. S., Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York.
- [8] Sharma, M., Jain, R. (2009). A Note on a Generalized M-Series as a Special Function of Fractional Calculus. *Fract. Calc. Appl. Anal.*, 12, 449-453.