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Abstract 
 

Underwater image enhancement is a vital task in computer vision due 

to severe image degradation caused by wavelength-dependent light 

absorption and scattering in aquatic environments. This paper presents 

a novel enhancement framework, AURIE (Adaptive Underwater 

Retinex Image Enhancement), which integrates Retinex theory with 

adaptive color correction and frequency-based decomposition for 

robust underwater image restoration. The proposed method 

decomposes the input into low- and high-frequency components, 

enabling illumination correction in the HSI color space and detail 

refinement via edge-preserving filters. A customized RetinexNet is 

introduced to perform gamma-based illumination adjustment and 

feature-preserving reflectance enhancement using attention-guided 

refinement. The network is optimized using perceptual, structural, and 

color consistency losses. Extensive experiments on benchmark datasets 

(UIEB, EUVP) demonstrate superior performance in UCIQE, UIQM, 

PSNR, and SSIM compared to existing techniques. The architecture is 

also lightweight and computationally optimized, making it suitable for 

real-time deployment in autonomous underwater systems for 

applications in marine exploration and underwater robotics.  
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1. Introduction 

Underwater image processing is crucial for applications such as marine research, exploration, and surveillance; 

however, conventional enhancement methods often fall short due to underwater-specific challenges like color 

distortion, blurriness, and low contrast caused by light absorption and scattering. These distortions significantly 

reduce the quality of underwater images, which are further affected by the physical properties of the water 

medium, such as light attenuation and scattering. To overcome these limitations, this study proposes a deep 

learning-based enhancement model that integrates traditional color correction with a semantically guided 

Generative Adversarial Network (GAN), operating in the LAB color space to specifically enhance the luminance 

channel for better brightness and detail retention.  Underwater image enhancement is vital for applications such 

as marine research, ocean exploration, and autonomous underwater navigation. However, challenges like 

wavelength-dependent light absorption, scattering, low visibility, strong color casts, and reduced contrast 

degrade image quality in aquatic environments. Traditional methods often fall short, as they cannot adapt to the 

spatially and depth-dependent nature of underwater distortions. 

 

 

 

 

 

 

 

 

 

 

 

 

This paper presents AURIE (Adaptive Underwater Retinex Image Enhancement)—a modular enhancement 

framework that combines Retinex theory with frequency-based image decomposition. The input image is split 

into low- and high-frequency components, which are independently enhanced: the low-frequency layer is 

corrected in HSI color space to address illumination and color imbalance, while the high-frequency layer 

undergoes edge-preserving filtering to recover detail. The Figure 2 illustrates this decomposition. 

AURIE also integrates a deep-learning-based Customized RetinexNet, which includes modules for learned 

decomposition, gamma correction, and detail refinement using attention and dilated convolutions as showed in 

the Figure 3. This hybrid approach merges the interpretability of traditional processing with the adaptability of 

neural networks. The complete AURIE pipeline supports real-time enhancement for underwater systems for the 

figure 4, such as AUVs and camera platforms, enabling clearer visuals for downstream vision tasks.  

2. Related Work  

In recent years, underwater vision has gained significant attention due to its wide range of applications, making 

underwater image enhancement (UIE) both an important and challenging task. This difficulty arises from 

complex underwater imaging conditions and the limitations of capture devices. Enhancement techniques are 

generally divided into non-deep learning (non-DL) and deep learning (DL) methods. While non-DL approaches 

are simpler and computationally less demanding, they often result in poor visual outcomes and lack robustness. 

In contrast, DL methods, although computationally intensive, offer better generalization and adaptability by 

learning patterns directly from data. 

 

 Fig.1 Example of Underwater Image 

degradation due to scattering and absorption 

 

Fig.3 Customized RetinesNet architecture for 

underwater enhancement 

 

Fig.2 Frequency decomposition into low- and 

high-frequency components 

 
Fig.4 Real-time AURIE enhancement pipeline 

application in AUVs 
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Underwater image enhancement has progressed considerably in recent years, moving from conventional image 

processing techniques to more sophisticated deep-learning-based methods. Traditional approaches, such as 

histogram equalization, white balancing, and Contrast-Limited Adaptive Histogram Equalization (CLAHE), 

offer computational efficiency and simplicity but fall short in addressing complex degradations inherent to 

underwater environments. These methods operate on global statistics and fail to consider the spatially varying 

nature of underwater distortions. 

To overcome these limitations, Retinex-based techniques were introduced, including Single-Scale Retinex (SSR) 

and Multi-Scale Retinex with Color Restoration (MSRCR). These methods simulate the human visual system by 

separating the image into reflectance and illumination components, allowing better contrast and color correction. 

However, they are often sensitive to noise and lack adaptability due to fixed parameter settings. (Figure 5, left) 

illustrates an example of enhancement using MSRCR, where results show modest improvement but remain 

susceptible to detail loss and over-saturation. 

 

 

With the emergence of deep learning, models such as UGAN, Water-Net, and Sea-Thru have shown promising 

results. These methods employ convolutional neural networks (CNNs) and generative adversarial frameworks to 

learn end-to-end enhancement mappings. While these approaches can produce visually compelling outputs and 

improve generalization, they typically require large-scale annotated datasets and are computationally intensive. 

(Figure 5, center) depicts enhanced results from a learning-based method (e.g., Water-Net), offering better 

contrast and detail retention than classical methods. 

AURIE bridges the gap between these paradigms by combining the physics-driven structure of Retinex theory 

with the flexibility and adaptability of modern neural networks. It integrates handcrafted frequency-based 

decomposition with a trainable RetinexNet, enabling both interpretability and data-driven optimization. This 

hybrid approach allows AURIE to perform competitively with deep-learning models while maintaining real-time 

efficiency. (Figure 5, right) shows the enhanced image output from AURIE, balancing color fidelity, edge 

preservation, and overall visibility. 

3. Proposed Methodology 

AURIE is composed of a hybrid enhancement pipeline that strategically combines handcrafted image processing 

techniques with data-driven deep learning modules. This integration allows AURIE to leverage the strengths of 

traditional models—such as physical interpretability, controllability, and low computational cost—while also 

benefiting from the adaptability and feature abstraction capabilities of neural networks. The handcrafted 

components, rooted in Retinex theory and frequency decomposition, enable precise control over illumination 

and texture enhancement, whereas the learned components, implemented via the Customized RetinexNet, allow 

the system to adaptively refine outputs based on context and scene content. This dual design ensures AURIE 

maintains high enhancement performance across diverse underwater conditions while remaining interpretable 

and suitable for real-time applications. 

3.1 Data Preparation 

To ensure robustness and generalization, the AURIE model is trained and evaluated using a comprehensive 

dataset composed of both real-world underwater images and synthetically generated samples. This dual-sourcing 

strategy enhances the diversity of training conditions, allowing the model to perform reliably across a broad 

spectrum of underwater environments. 

MSCRR Water-Net AURIE 

Fig.5 Comparative outputs – MSCRR (Left), Water-Net (Middle), AURIE (Right) 
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 Public Datasets (UIEB, EUVP): These benchmark datasets include a wide range of underwater 

imagery captured in real-world scenarios. The images span various conditions—different water types 

(clear, turbid), depths, illumination patterns, and scene content (reefs, open water, marine organisms). 

Such diversity ensures that the model encounters a variety of visual distortions during training, such as 

color casts, haze, and low contrast. 

 Synthetic Data Generation: To supplement real-world data, synthetic underwater images are 

generated using physics-based models that simulate light attenuation and scattering based on depth, 

turbidity, and wavelength absorption properties. This enables the creation of controlled scenarios with 

tunable degradation levels, which are particularly useful for training the model on edge cases and 

underrepresented conditions. 

For supervised training, ground truth images are either obtained from available clear-reference images or 

approximated using multi-image fusion techniques, where multiple degraded inputs are algorithmically 

combined to infer a visually plausible undistorted reference. The final dataset is partitioned into training, 

validation, and testing subsets to facilitate proper learning, hyper-parameter tuning, and performance evaluation. 

3.2 Frequency Decomposition 

To enable adaptive and targeted enhancement, the input RGB image is decomposed into low-frequency and 

high-frequency components via low-pass filtering (e.g., Gaussian or bilateral filter). This decouples global 

illumination and color trends from fine-grained structural content. 

 Low-Frequency Component (L): Encodes broad-scale information such as luminance gradients, color 

cast, and overall scene brightness—key aspects affected by underwater light attenuation and scattering. 

 High-Frequency Component (H): Captures texture, fine edges, and detailed scene structures that are 

often degraded or blurred in underwater conditions. 

This decomposition supports AURIE’s dual-path processing: one path focuses on global perceptual corrections 

(illumination, chromaticity), while the other emphasizes localized structural fidelity. 

3.3 Low-Frequency Enhancement 

The low-frequency component is processed in the HSI color space to exploit its perceptual alignment with 

human vision and its ability to separately manipulate brightness and chroma 

Color Cast Correction: Adjustments to hue and saturation components mitigate bluish/greenish color shifts by 

rebalancing chromatic information based on underwater color priors. 

Adaptive Contrast Enhancement: The intensity channel is enhanced using Gaussian-weighted smoothing for 

brightness balancing and Heaviside step functions to non-linearly amplify low-illumination zones, improving 

contrast without overexposing highlights. 

Recomposition Prep: The enhanced L component is normalized and prepared for fusion with the refined high-

frequency details, ensuring structural consistency and tonal continuity in the final image. 



Int J Innovat Res Growth, 14(3), July 2025                                                                                  Narasimhulu et al. 

 

143114 
 

 

3.4 High-Frequency Enhancement 

The high-frequency map is prone to noise and compression artifacts. Two methods are used: 

 Guided Filtering: Smooths textures using the base layer as reference. 

 Bilateral Filtering: Retains edge integrity while reducing noise. 

3.5 Final Image Reconstruction 

The final stage in the AURIE pipeline involves fusing the independently enhanced low-frequency and high-

frequency components to reconstruct a visually coherent RGB image. This fusion is essential for restoring both 

global luminance and local texture details, resulting in an image that is perceptually balanced and visually 

appealing. We are considered two primary fusion strategies: 

 Multiplicative Fusion: The reflectance and illumination components are multiplied pixel-wise to 

mimic the physical interaction of light and surface reflection, consistent with Retinex theory. This 
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method enhances natural brightness and shadow effects but may intensify noise if not properly 

constrained. 

 Additive Fusion: High-frequency details are added back to the base (low-frequency) layer after 

enhancement. This approach provides more control over contrast and sharpness, particularly effective 

when detail preservation is prioritized. 

In AURIE, an adaptive mechanism selects the optimal fusion method based on local image properties such as 

gradient strength, illumination uniformity, and entropy. This ensures that the final output maintains a high level 

of color fidelity, structural integrity, and perceptual clarity. 

 

 

 

The figure 6, demonstrates the reconstruction process, where the separately processed components are 

seamlessly combined into a final, high-quality underwater image. 

4. Experimental Results 

The experimental workflow depicted in the figure demonstrates the end-to-end architecture of the AURIE 

framework, beginning with deep Retinex-based decomposition of the input underwater image. This process uses 

a series of convolutional layers to separate the image into two distinct components: reflectance and illumination. 

The reflectance map retains essential scene textures and color details, while the illumination map captures the 

spatial distribution of lighting. This separation allows for precise, component-specific enhancement, tailored to 

the unique degradation patterns found in underwater imagery. 

 

 

4.1 Datasets and Baselines 

AURIE is evaluated using two benchmark datasets: UIEB (Underwater Image Enhancement Benchmark) and 

EUVP (Enhancement of Underwater Visual Perception). These datasets encompass a wide variety of underwater 

scenarios, including shallow reef scenes, deep-sea environments, and synthetic degradations. For comparative 

analysis, AURIE is benchmarked against well-known enhancement methods: MSRCR (a classical Retinex-based 

Low-frequency Component High-frequency Component 

 

Final Image Reconstruction 

 Fig.6 Final image reconstruction through fusion of low and high frequency components 

Low frequency input Deep Learning Algorithm  Reconstruction +Retinex constrains Final Image  

Figure 7.  Practical implementation of Depp learning with image reconstruction through fusion of 

low and high frequency components 
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model), CLAHE (a global contrast adjustment method), UGAN (a generative adversarial network-based 

method), and Water-Net (a learning-based model using scene depth and light modelling). 

4.2 Evaluation Metrics 

To assess the performance of AURIE in both perceptual and quantitative terms, the following metrics are 

utilized: 

 UCIQE (Underwater Color Image Quality Evaluation): Focuses on evaluating image contrast, 

chroma, and saturation. 

 UIQM (Underwater Image Quality Measure): Assesses image sharpness, colorfulness, and contrast. 

 PSNR (Peak Signal-to-Noise Ratio): Measures the fidelity of the reconstructed image compared to the 

ground truth. 

 SSIM (Structural Similarity Index): Evaluates the structural consistency between the enhanced and 

reference images. 

These metrics collectively offer a comprehensive analysis of enhancement effectiveness from low-level 

accuracy to high-level visual quality. 

4.3 Qualitative and Quantitative Analysis 

AURIE demonstrates significant improvements over baseline methods: 

 Enhanced perceptual quality with natural color reproduction and balanced tonal correction. 

 Superior edge preservation and reduction in haze, contributing to sharper visual features. 

 Consistently high scores across UCIQE, UIQM, PSNR, and SSIM, validating the framework's strength 

in both detail enhancement and visual realism. 

Sample enhanced images reveal that AURIE avoids common artifacts like overexposure, unnatural tints, and 

loss of texture, which frequently appear in classical or over-optimized neural methods. 

5. Conclusion 

This paper presented AURIE, an adaptive underwater image enhancement framework that integrates Retinex 

theory, frequency decomposition, and deep-learning-based feature refinement. AURIE effectively addresses key 

underwater image degradation issues such as color cast, low contrast, and loss of clarity. It achieves perceptual 

and quantitative superiority over existing methods and maintains computational feasibility for real-time 

applications. AURIE’s hybrid nature makes it a compelling candidate for deployment in practical underwater 

imaging systems. 
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