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Abstract  

The present paper deals with the representation of the generalized K-function, which is an extension of the multi-index 

Mittag-Leffler function defined by Kiryakova [9], the topic has been introduced and studied by the author in terms of 

some special functions. it investigates the relations that exists between the generalized K-function and the operators of 

Riemann-Liouville fractional integrals and derivatives.  
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1. Introduction 

The Mittag-Leffler function has gained importance and popularity during the last decade mainly due to its applications 

in the solution of fractional-order differential, integral and difference equations arising in certain problems of 

mathematical, physical, biological and engineering sciences. This function is introduced and studied by Mittag-Leffler 

[10,11] in terms of the power series. 
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A generalization of this series comes in the following form  

 

 ( )0,       2.1                              

which has been studied by several authors notably Mittag-Leffler [10,11], Wiman [13], Agrawal [15], Humbert and 

Agrawal [8] and Dzrbashjan [1,2,3]. It is shown in [5] that the function defined by (1.1) and (1.2) are both entire 

functions of order 1 and type .1 A detailed account  of the basic properties  of these two functions  are 

given in the third volume  of Bateman manuscript project[4] and an account of their various properties  can be found 

in [2,12].  

An interesting generalization of (1.2) is recently introduced by Kilbas and Saigo[16] in terms of a special entire 

function of the form 
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and an empty product is to be interpreted as unity. Certain properties of this function are associated with fractional 

integrals and derivatives [12]. 

The multiindex Mittag-Leffler function is defined by Kiryakova[9] by means of the power series 
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where 1m  is an integer, j and j  are arbitrary real numbers. 

The multi index Mittag-Leffler function is an entire function that gives its asymptotic, estimate, order and type see 
Kiryakova[9]. 

The Wright generalized hypergeometric function [17] is given by  
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It is provided that the Riemann-Liouville fractional integral and derivative of the Wright function is also the Wright 

function but of greater order. Conditions for the existence of the series (1.4) together with its presentation in terms of 

the Mellin-Barnes integral and of the H-function were established in [18]. 

When 1...... 11  qp BBAA , (1) reduces to   .qpF : 
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The present paper is organized as follows: In section 2, we give the definition of the Generalized K-function and its 

relation with another special functions, namely multi-index Mittag-Leffler function, Mittag-Leffler function, 

generalized Mittag-Leffler function and exponential function. In section 3, certain relations that exists between 

generalized K-function and the operators of Riemann-Liouville fractional calculus are investigated. 

2. The Generalized K-Function 

The generalized K-function introduced by the author is defined as follows: 
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where 1m  is an integer, )0(j and j  are arbitrary real numbers , rja )( and rjb )( are the Pochhammer 

symbols. 
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The series (2.1) is defined when none of the parameters ,,...,2,1, qjsbj  is a negative integer or zero. If any 

numerator parameter jra  is a negative integer or zero, the series terminates to a polynomial in z. From the ratio test it 

is evident that the series is convergent for all z if p > q + 1. When p = q + 1 and ,1z the series can converge in 

some cases. Let 
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 . It can be stated that when p = q + 1 the series is absolutely convergent for 

1z if ( 0)( R , conditionally convergent for z = -1 if 0≤ 1)( R  and divergent for 1z if 1≤ ).(R  

2.1. Some Special Cases of Generalized K-Function are Given Below 

(i) When there are no upper and lower parameters, we get   
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which reduces to the multi-index Mittag-Leffler function defined by Kiryakova[9]. 

(ii) If we put 0,2  qpm  in (2.1), we get  
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It is shown by Dzrbashjan[3] that (2.2) is an entire function of order 
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which is the generalized Mittag-Leffler function denoted by )(
,

zE 
 see [10]. 
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(v) If we take 1  in (2.4), we get the Exponential function [14] denoted bye
x
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3. Relations with Riemann-Liouville Fractional Calculus 

In this section, we derive certain relations between generalized K-function and Riemann-Liouville Fractional 

Calculus. 
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Theorem 3.1 Let ),...,2,1(0,0,0 mjjj    and I Z
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Proof: Following Section 2 of the book by Samko, Kilbas and Marichev [8], the fractional Riemann-Liouville(R-L) 

integral operator (For lower limit a=0 w. r. t. variable z) is given by 
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Interchanging the order of integration and evaluating the inner integral with the help of Beta function, it gives 
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The interchange of the order of integration and summation is permissible under the conditions stated along with the 

theorem due to convergence of the integrals involved in this process. 

That is, as naturally expected for fractional calculus operators of special functions being generalized hypergeometric 

functions, a Riemann-Liouville fractional integral of the K-function is again the K-function with the indices p+1, q+1. 

This completes the proof of the theorem (3.1). 

Theorem 3.2 Let ),...,2,1(0,0,0 mjjj    and DZ
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derivative, then there holds the relation 
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Proof: Following Section 2 of the book by Samko, Kilbas and Marichev[8], the fractional Riemann-Liouville(R-L) 

integral operator(For lower limit a = 0 w. r. t. variable z ) is given by 
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where  1][  n . 

From (2.1) and (3.6), it follows that 
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Interchanging the order of integration and evaluating the inner integral with the help of Beta function, it gives 
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This shows that a Riemann-Liouville fractional integral of the K-function is again the K-function with the indices 

p+1, q+1. 

This completes the proof of the theorem (3.2). 

4. Conclusion 

The study has established the various properties of the generalized K-Function and its recurrence relations. The 

presentations discussed in this study will make the reader familiar with the present trends of research in generalized 

K-Function and will help in fostering their applications. 
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