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Abstract 

In this paper, we obtain  a solution of fractional logistic equation in terms of  generalized Mittag-

Leffler function. 
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1- INTRODUCTION 

In recent years applications of fractional calculus 

have been investigated extensively. Considerable 

amount of work has been done in area of 

fractional differential equations and many 

analytical and numerical methods were 

developed and employed for obtaining the 

solution reported by Mathai et al. [1]. It has been 

found that in some cases fractional calculus is 

more accurate than classical calculus to describe 

dynamic behavior of real world physical 

systems. Exponential function which arises by 

solving differential equation plays an important 

role for describing growth and decay in many 

physical applications. In fractional ordered 

differential equation, exponential function loses 

its properties to describe the solution and Mittag-

Leffler function is used as its substitute. 

A non linear differential equation of population 

growth model was first published by Verhulst 

[2], subsequently known as logistic equation, 
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whose exact closed form is given by 
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where u0  is the initial state when time 0t . This equation often arises while modeling ecology, 

neural networks, epidemics, Fermi distribution, economics, sociology etc. So, we are motivated to 

study fractional logistic equation by 5 generalizing (1) to its non-integer part. 

In 2015, Bruce J. West [3] considered fractional form of non-linear logistic equation in following 

form, 
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He found solution using Carleman embedding technique as, 
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whereas in 2016, Area et al. [4], has shown that the solution given in (3) is not an exact solution of 

fractional logistic equation. Further, Ortigueira et al.[5] expressed exact solution of fractional logistic 

equation in terms of fractional Taylor series. 

In this paper, we propose a new approach in light of Jumarie [6] concept to obtain solution of 

fractional logistic equation. 

The Mittag-Leffler function introduced by MittagLeffler [7] in 1903 is defined as 
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Where .0)Re(,,   C  

The generalization of (5) is given by Wiman[3] 
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where .0)Re(,0)Re(,,   C  

Due to direct involvement in generalization of ordinary differential equation to its non-integer order, 

Mittag-Leffler function is found very useful in many areas of science and engineering. Caputo's [8] 

definition of fractional derivative is given by 
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2- MAIN RESULTS 

Logarithm Function with generalized Mittag-Leffler Function as the base.  

Let RRE :,  (one-one and onto, if exists) has inverse function )log(
,

, EL
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we define L  ,   as 
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This is important to note that E  ,  is not one to one in general and hence the log function of E  ,  is not 

always defined. 

Proposition: Let )( 1, xEu   and )( 2, xEv  , where 0,   with above conditions (8). Then, 
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We consider the following logistic fractional equation 
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where 1,0   and )(tuu  . 

 

We may write this as  
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Jumarie [6] clarified that, some formulas do not hold for the classical Riemann-Liouville definition, 

but can be applied with the modified Riemann-Liouville definition. 

Further using the proposition for obtaining the solution of (9),  
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where C is the integration constant. On using (8) and (11), we get 
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where 1,0    and on putting 1   we get xx
eE

loglog
1

 . Here we also clarify that the 

numerical value of ))(1()( tutu   is approximately very close to
)(1
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Now substituting the value of C in (12), we arrive at 
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On  simplifying, we get 
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Note: (i) If we set  1 in above results,  we obtain[12]. 

(ii) If we take 1  ,  we arrive at [12]. 
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