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Abstract
In this paper the authors derive the results based on the Mittag-Leffler type
function. Some special cases of interest are also discussed.

Introduction

The importance of Mittag-Leffler functions in physics is steadily increasing. It is
simply said that deviations of physical phenomena from exponential behavior
could be governed by physical laws through Mittag-Leffler functions (power law).
The Mittag-Leffler function.

E.(X)= 2“ 1) (a>0)

(1.1)

and its generalized form
Z X' B0
Eaﬁ( ) r= OF( r+ ﬁ) (a i ) (12)

A generalization of (1.1) and (1.2) was introduced by Prabhakar in terms of the
series representation

, S (MX (a By €C,Re(a) > 0)
Erp(X) = ; rT(ar + B)
(1.3)

Where (y),is Pochammer’s symbol defined by
), =7+D...((y+(n=1),ne N,y =0.

It is an entire function of order p = [Re(a)]_l.
A generalization of (1.3) was defined by Sharma as

(a.l)r (ap)r Xr
< (b2)r...(be)r T(ar +1)

pM:(al,...,ap;bl b X) = )M, S(X)= Z

(1.4)

Where o € C,Re(x) >0 and (aj)rand (bj)r are the Pochammer symbols. The
detailed information of this series is given in.
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A generalization of (1.3) was defined by Sharma as

a.p by CoN a.p _ = (al)r...(ap)r Xr
Mg (BB piX) = oM () = 2 5 S

(1.5)
Where «, f € C,Re(a) > 0 and (a;)rand (b;)r are the Pochammer symbols. The
detailed information of this series is given in.

o Left-sided Riemann-Liouville fractional integral
1 T a-1
17 f)(X) =—— | (x-t)" " (t)dt,Re(xr) > 0.

(1.6)

e Right-sided Riemann-Liouville fractional integral

(17§ )(X) = ﬁza ~%)“f (t)dt, Re(@) > 0.

(1.7)
Fractional Differentiation and Integration of the generalized M-Series
In this section results connecting the function defined by (1.6) and the Riemann-
Liouville fractional integrals and derivatives are presented in the form of theorems
given below:

Theorem 1.1- let & >0,8>0,acR and |,, is the left-sided Riemann-Liouville
fractional integral operator then there holds the formula:

(Ioje w7 @) =x* M. (ax’)
(2.1)
Proof:

By using the definition of left sided Riemann-Liouville fractional integral (1.6)
and definition (1.5), we arrive at the desired result.
On a similar fashion we can prove another theorem given below.

Theorem 1.2- let «, 8,y >0,acR and |° be the right-sided Riemann-Liouville
fractional integral operator then there holds the formula:

0"l 27 @) =x 7l (ax?)
(2.2)
Proof:

By using the definition of right sided Riemann-Liouville fractional integral (1.7)
and definition (1.5), we arrive at the desired result.

Remarks: If we set r=s=0in above theorems, we get the results given by
Saxena and Saigo.
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