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Abstract 

In this paper the authors derive the results based on the Mittag-Leffler type 

function. Some special cases of interest are also discussed. 

 

Introduction 

The importance of Mittag-Leffler functions in physics is steadily increasing. It is 

simply said that deviations of physical phenomena from exponential behavior 

could be governed by physical laws through Mittag-Leffler functions (power law).  

The Mittag-Leffler function. 
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and its generalized form 
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A generalization of (1.1) and (1.2) was introduced by Prabhakar in terms of the 

series representation 
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Where )( n is Pochammer’s symbol defined by   
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It is an entire function of order .)][Re( 1   
A generalization of (1.3) was defined by Sharma as  
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Where 0)Re(,   C  and rja )( and rjb )( are the Pochammer symbols. The 

detailed information of this series is given in. 
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A generalization of (1.3) was defined by Sharma as  
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 5.1  

Where 0)Re(,,   C  and rja )( and rjb )( are the Pochammer symbols. The 

detailed information of this series is given in. 

 

Left-sided Riemann-Liouville fractional integral  
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Right-sided Riemann-Liouville fractional integral  
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Fractional Differentiation and Integration of the generalized M-Series 

In this section results connecting the function defined by (1.6) and the Riemann-

Liouville fractional integrals and derivatives are presented in the form of theorems 

given below: 

Theorem 1.1- let Ra ,0,0   and I


0    is the left-sided Riemann-Liouville 

fractional integral operator then there holds the formula: 
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 1.2

 Proof: 

By using the definition of left sided Riemann-Liouville fractional integral (1.6) 

and definition (1.5), we arrive at the desired result. 

On a similar fashion we can prove another theorem given below. 

Theorem 1.2- let Ra ,0,,   and I


    be the right-sided Riemann-Liouville 

fractional integral operator then there holds the formula: 
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 2.2  

Proof: 

By using the definition of right sided Riemann-Liouville fractional integral (1.7) 

and definition (1.5), we arrive at the desired result. 

Remarks: If we set 0 sr in above theorems, we get the results given by 

Saxena and Saigo.  
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